55 research outputs found

    SV Cen reveals its mystery

    Full text link
    Our very-first high resolution spectra of SV Cen close binary system obtained in the H alpha line reveal its absorption and emmision components, changing with orbital phase. An accretion disk surrounding the component eclipsed at the primary minimum is the most plausible explanation of this complex structure.Comment: To appear in ASP Conference Series special issue: "Binaries: Key to Comprehension of the Universe

    A study of contact binaries with large temperature differencies between components

    Full text link
    We present an extensive analysis of new light and radial-velocity (RV) curves, as well as high-quality broadening-function (BF) profiles of twelve binary systems for which a contact configuration with large temperature differencies between components has been reported in the literature. We find that six systems (V1010 Oph, WZ Cyg, VV Cet, DO Cas, FS Lup, V747 Cen) have near-contact configurations. For the remaining systems (CX Vir, FT Lup, BV Eri, FO Hya, CN And, BX And), our solutions of the new observations once again converge in a contact configuration with large temperature differencies between the components. However, the bright regions discovered in the BFs for V747 Cen, CX Vir, FT Lup, BV Eri, FO Hya, and CN And, and further attributed to hot spots, shed new light on the physical processes taking place between the components and imply the possibility that the contact configurations obtained from light- and RV-curve modelling are a spurious result.Comment: Submited to Acta Astronomic

    A photometric and spectroscopic study of WW And - an Algol-type, long period binary system with an accretion disc

    Full text link
    We have analyzed the available spectra of WW And and for the first time obtained a reasonably well defined radial velocity curve of the primary star. Combined with the available radial velocity curve of the secondary component, these data led to the first determination of the spectroscopic mass ratio of the system at q-spec = 0.16 +/- 0.03. We also determined the radius of the accretion disc from analysis of the double-peaked H-alpha emission lines. Our new, high-precision, Johnson VRI and the previously available Stromgren vby light curves were modelled with stellar and accretion disc models. A consistent model for WW And - a semidetached system harbouring an accretion disc which is optically thick in its inner region, but optically thin in the outer parts - agrees well with both spectroscopic and photometric data.Comment: Accepted by New Astronom

    Light-curve variation caused by accretion column switching stellar hemispheres

    Get PDF
    We investigate switching of the accretion column between the stellar hemispheres in the magnetosphere of a star with the dipole magnetic field aligned with the stellar rotation axis. We show that such switching can produce 'hiccups' in the observed light curves. The intensity of emitted radiation from the stellar surface as seen by distant observers is computed from our two-dimensional axisymmetric viscous and resistive magnetohydrodynamic numerical simulations. This result is used to construct a three-dimensional model of a star with the ring-shaped hotspots from the accretion columns at the stellar surface. We compute the intensity from such hotspots. To obtain a non-axisymmetric model with arc-shaped hotspots, we remove a ring section in the azimuthal direction from the hotspots and compute the intensity of the radiated emission. Such models can be used to relate physical parameters in the simulations to the observations. We show an example with the intensity computed from our model compared to observational light curve

    Disc light variability in the FUor star V646 Puppis as observed by TESS and from the ground

    Get PDF
    Context. We investigate small-scale light variations in V646 Pup occurring on timescales of days, weeks, and years. Aims: We aim to investigate whether this variability is similar to that observed in FU Ori. Methods: We observed V646 Pup on six occasions at the SAAO and CTIO between 2013 and 2018 with Johnson and Sloan filters, typically using a one-day cadence maintained for two to four weeks. We also utilised the public-domain 1512-day-long ASAS-SN light curve and TESS photometry obtained in 2019 over 24.1 days with a 30 min cadence. New SAAO low-resolution spectra assist in updating major disc parameters, while the archival high-resolution Keck spectra are used to search for temporal changes in the disc rotational profiles. Results: The ground-based observations confirm the constantly decreasing brightness of V646 Pup at the rate of 0.018 mag yr-1. Precise i-band sensitive TESS data show that the slight, 0.005-0.01 mag, light variations imposed on this general trend do consist of a few independent wave trains of an apparently time-coherent nature. Assuming that this is typical situation, based on an analysis of colour-magnitude diagrams obtained for earlier epochs, we were able to make a preliminarily inference that the bulk of the light changes observed could be due to the rotation of disc photosphere inhomogeneities, arising between 10-12 R☉ from the star. We do not exclude the possibility that these inhomogeneities could also manifest themselves in the rotational profiles of the disc, as obtained from the high-resolution spectra. Assuming Keplerian rotation of these inhomogeneities, we give a preliminary determination of the stellar mass at 0.7-0.9 M☉. Conclusions: Over certain weeks, at least, V646 Pup has shown time-coherent light variability pattern(s) that could be explained by the rotation of an inhomogeneous disc photosphere. These preliminary results are similar to those better established for FU Ori, which suggests a common driving mechanism(s). Tables A.1-A.8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/644/A13

    The quest for planets around subdwarfs and white dwarfs from Kepler space telescope fields. I. Techniques and tests of the methods

    Get PDF
    Context. In this study, we independently test the presence of an exoplanet around the binary KIC 9472174, which is composed of a red dwarf and a pulsating type B subdwarf. We also present the results of our search for Jupiter-mass objects orbiting near to the eclipsing binary KIC 7975824, which is composed of a white dwarf and type B subdwarf, and the pulsating white dwarf KIC 8626021. Aims: The goal is to test analytical techniques and prepare the ground for a larger search for possible substellar survivors on tight orbits around post-common envelope binaries and stars at the end of their evolution, that is, extended horizontal branch stars and white dwarfs. We, therefore, mainly focus on substellar bodies orbiting these stars within the range of the host's former red-giant or asymptotic-giant phase envelopes. Due to the methods we use, the quest is restricted to single-pulsating type B subdwarf and white dwarf stars and short-period eclipsing binaries containing a white dwarf or a subdwarf component. Methods: Our methods rely on the detection of exoplanetary signals hidden in photometric time series data from the Kepler space telescope, and they are based on natural clocks within the data itself, such as stellar pulsations and eclipse times. The light curves are analyzed using Fourier transforms, time-delays, and eclipse timing variations. Results: Based on the three objects studied in this paper, we demonstrate that these methods can be used to detect giant exoplanets orbiting around pulsating white dwarf or type B subdwarf stars as well as short-period binary systems, at distances which fall within the range of the former red-giant envelope of a single star or the common envelope of a binary. Using our analysis techniques, we reject the existence of a Jupiter-mass exoplanet around the binary KIC 9472174 at the distance and orbital period previously suggested in the literature. We also found that the eclipse timing variations observed in the binary might depend on the reduction and processing of the Kepler data. The other two objects analyzed in this work do not have Jupiter mass exoplanets orbiting within 0.7-1.4 AU from them, or larger-mass objects on closer orbits (the given mass limits are minimum masses). Conclusions: Depending on the detection threshold of the time-delay method and the inclination of the exoplanet orbit toward the observer, data from the primary Kepler mission allows for the detection of bodies with a minimum of ~1 Jupiter-mass orbiting these stars at ~1 AU, while data from the K2 mission extends the detection of objects with a minimum mass of ~7 Jupiter-mass on ~0.1 AU orbits. The exoplanet mass and orbital distance limits depend on the length of the available photometric time series

    A stable quasi-periodic 4.18 d oscillation and mysterious occultations in the 2011 MOST light curve of TWHya

    Get PDF
    We present an analysis of the 2011 photometric observations of TW Hya by the MOST satellite; this is the fourth continuous series of this type. The large-scale light variations are dominated by a strong, quasi-periodic 4.18 d oscillation with superimposed, apparently chaotic flaring activity; the former is most likely produced by stellar rotation with one large hot spot created by a stable accretion funnel in the stable regime of accretion while the latter may be produced by small hot spots, created at moderate latitudes by unstable accretion tongues. A new, previously unnoticed feature is a series of semi-periodic, well defined brightness dips of unknown nature of which 19 were observed during 43 days of our nearly-continuous observations. Re-analysis of the 2009 MOST light curve revealed the presence of 3 similar dips. On the basis of recent theoretical results, we tentatively conclude that the dips may represent occultations of the small hot spots created by unstable accretion tongues by hypothetical optically thick clumps.Comment: Printed in MNRA

    Photometric variability in FU Ori and Z CMa as observed by MOST

    Get PDF
    Photometric observations obtained by the MOST satellite were used to characterize optical small scale variability of the young stars FU Ori and Z CMa. Wavelet analysis for FU Ori reveals the possible existence of several 2-9 d quasi-periodic features occurring nearly simultaneously; they may be interpreted as plasma parcels or other localized disc heterogeneities revolving at different Keplerian radii in the accretion disc. Their periods may shorten slowly which may be due to spiralling in of individual parcels toward the inner disc radius, estimated at 4.8+/-0.2 R_sun. Analysis of additional multicolour data confirms the previously obtained relation between variations in the B-V colour index and the V magnitude. In contrast to the FU Ori results, the oscillation spectrum of Z CMa does not reveal any periodicities with the wavelet spectrum possibly dominated by outburst of the Herbig Be component.Comment: Accepted by MNRA

    Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST

    Get PDF
    Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilised: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the SAAO in April - May of 2013, (3) archival V-filter ASAS data for nine seasons, 2001 - 2009. They were augmented by an analysis of high-resolution, public-domain VLT-UT2 UVES spectra from the years 2000 to 2012. From the MOST observations, we infer that irregular light variations of RU Lup are caused by stochastic variability of hot spots induced by unstable accretion. In contrast, the MOST light curves of IM Lup are fairly regular and modulated with a period of about 7.19 - 7.58 d, which is in accord with ASAS observations showing a well defined 7.247+/-0.026 d periodicity. We propose that this is the rotational period of IM Lup and is due to the changing visibility of two antipodal hot spots created near the stellar magnetic poles during the stable process of accretion. Re-analysis of RU Lup high-resolution spectra with the Broadening Function approach reveals signs of a large polar cold spot, which is fairly stable over 13 years. As the star rotates, the spot-induced depression of intensity in the Broadening Function profiles changes cyclically with period 3.71058 d, which was previously found by the spectral cross-correlation method.Comment: 14 pages, 7 figures. Accepted by MNRA

    Analysis of variability of TW Hya as observed by MOST and ASAS in 2009

    Get PDF
    As a continuation of our previous studies in 2007 and 2008, new photometric observations of the T Tauri star TW Hya obtained by the MOST satellite and the ASAS project over 40 days in 2009 with temporal resolution of 0.2 days are presented. A wavelet analysis of the combined MOST-ASAS data provides a rich picture of coherent, intermittent, variable-period oscillations, similarly as discovered in the 2008 data. The periods (1.3 - 10 days) and systematic period shortening on time scales of weeks can be interpreted within the model of magneto-rotationally controlled accretion processes in the inner accretion disk around the star. Within this model and depending on the assumed visibility of plasma parcels causing the oscillations, the observed shortest-period oscillation period may indicate the stellar rotation period of 1.3 or 2.6 d, synchronized with the disk at 4.5 or 7.1 solar radii, respectively.Comment: Accepted to MNRA
    corecore